CERES Flux-by-Cloud Type Simulator Update

Zachary Eitzen
September 2, 2015

Thanks to Wenying Su, Kuan-Man Xu, David Doelling, Norman Loeb, Seiji Kato, and Alejandro Bodas-Salcedo for helpful input!

What is the Flux-by-cloud type product?

- Assigns a flux to each observed ISCCP cloud type within a region.
- For each 1°x1° region between 60° S and 60° N, each daytime footprint is placed into 1-3 p_c - τ ISCCP-like categories (3 categories would be the case of a footprint with two cloud levels as well as clear pixels).
- For the footprints with a single cloud type, the standard SSF flux is added to that p_c - τ category.
- For footprints with multiple cloud levels, narrowband-to-broadband radiance conversions are performed for each cloud level.
- Broadband radiances are converted to fluxes using ADMs.

What is a simulator?

 Put simply, a simulator is meant to replicate what a space-based instrument would measure if it flew above a GCM or other model on the temporal and spatial scales of the measurements.

Motivation for flux-by-cloud type simulator

- Cloud properties and fluxes/albedos will be matched within 1.5
 hours to the closest CERES overpass, which is important because
 of the large diurnal cycles in cloud fraction, τ, and p_c in many areas.
- Breaking out the flux by cloud type can help isolate physical parameterizations that are problematic (e.g., convective clouds, boundary-layer parameterizations, or processes involving surface albedo), and provide a test for new parameterizations.
- Diagnoses using flux-by-cloud type combined with frequency of occurrence can also help determine whether an unrealistically small or large occurrence of a given cloud type has an important radiative impact for a given region.

Outline of Simulator Approach

Read in data at GCM grid size

Run cloud generator to produce 1000 atmospheric subcolumns per grid cell

Use cloud property simulator to classify subcolumns into p_c - τ cloud types

Perform radiative transfer on every subcolumn in each type to get fluxes

Outline of Faster Simulator Approach

Number of RT calculations needed now depends on how much variety of clouds there is in a given grid box, but for the three regions here, the number of calculations is reduced by 95-99%.

SW Flux consistency check (Simulator- HadGEM2-A): Subcolumns reproduce GCM grid-scale SW fluxes fairly well

LW Flux consistency check: Simulator has negative biases, especially over Eq Pacific. RMS errors are mainly due to biases.

Southeast Pacific results

Cloud fraction (%) for CERES, HadGEM2-A over SE Pacific (Jan 2008)

 $\boldsymbol{\tau}$

HadGEM2-A

τ

HadGEM2-A – CERES. Good general pattern, but too many low, thick clouds and not enough low, thin clouds.

Grid-mean total cloud fraction:

CERES: 0.578

HadGEM2-A: 0.475

TOA SW albedo by cloud type for CERES, HadGEM2-A over SE Pacific (Jan 2008)

CERES

HadGEM2-A

HadGEM2-A – CERES. Albedos a bit low for most cloud types, but high for the highest optical depths

Grid-mean all-sky SW albedo: CERES: 0.193 HadGEM2-A: 0.189

τ

TOA LW flux by cloud type (W m⁻²) for CERES, HadGEM2-A over SE Pacific (Jan 2008)

τ

HadGEM2-A

τ

HadGEM2-A – CERES. OLRs are low for most cloud types, but too high for some high- and medium-top clouds.

Grid-mean all-sky OLR: CERES: 272.4 W m⁻²

HadGEM2-A: 275.5 W m-2

Equatorial Pacific results

Cloud fraction (%) for CERES, HadGEM2-A over Equatorial Pacific (Jan 2008)

Frequency of occurrence difference (%)

180
310
440
560
800
1000
0.3
1.3
3.6
9.4
23
60
379
Cloud optical depth

HadGEM2-A – CERES. Far too few clouds overall, especially for high, thin clouds.

Grid-mean total cloud fraction: CERES: 0.798 HadGEM2-A: 0.397

TOA SW albedo by cloud type for CERES, HadGEM2-A for Equatorial Pacific (Jan 2008)

τ

HadGEM2-A

τ

HadGEM2-A – CERES. Albedos a bit low for most cloud types, but high for medium/high optical depths at lower altitudes.

Grid-mean all-sky SW albedo: CERES: 0.220

HadGEM2-A: 0.186

TOA LW flux by cloud type (W m⁻²) for CERES, HadGEM2-A over Equatorial Pacific (Jan 2008)

HadGEM2-A – CERES. OLRs are low for almost all cloud types, except for highest, thinnest clouds.

Grid-mean all-sky OLR: CERES: 227.7 W m⁻² HadGEM2-A: 260.2 W m⁻²

Southern Great Plains results

Cloud fraction (%) for CERES, HadGEM2-A over Southern Great Plains (Jan 2008)

CERES

HadGEM2-A

HadGEM2-A – CERES. Similar amounts of clouds for most types, but more high clouds than observed.

Grid-mean total cloud fraction:

CERES: 0.539

HadGEM2-A: 0.518

TOA SW albedo by cloud type for CERES, HadGEM2-A for Southern Great Plains (Jan 2008)

 $\boldsymbol{\tau}$

HadGEM2-A – CERES. Albedos low for most cloud types, especially at mid-levels.

Grid-mean all-sky SW albedo: CERES: 0.367

HadGEM2-A: 0.330

TOA LW flux by cloud type (W m⁻²) for CERES, HadGEM2-A over SGP (Jan 2008)

HadGEM2-A – CERES. OLRs are too high for most low, medium height clouds.

Grid-mean all-sky OLR: CERES: 231.1 W m⁻² HadGEM2-A: 240.3 W m⁻²

Summary

- Identifying unique subcolumns reduces the number of RT calculations required by >95%.
- SW biases and RMS errors between the RT model and HadGEM2-A are relatively small, but there is a negative bias in OLRs.
- Over the SE Pacific, HadGEM2-A produces low clouds and has a realistic all-sky albedo, but the clouds tend to be too few and too thick.
- Over the Equatorial Pacific, HadGEM2-A produces far too few clouds, resulting in unrealistically high all-sky OLR, even though the OLR by cloud type is generally low.
- Over the Southern Great Plains, the cloud fraction is realistic, with clouds generally in the right place, but albedo is too low and OLR is too high, possibly indicating a problem with (too little) snow cover?

Future Plans

- Analyze FBCT simulator for whole domain (60 N – 60 S). One month has been processed but not yet analyzed.
- Convert input for Langley Fu-Liou model to direct input. This may alleviate some of the cold OLR bias.

Extra slides

Newer Results: SE Pacific

- Gathered 1585 profiles (approx. one per day) with various cloud conditions over 10-20 S, 80-90 W.
- In the shortwave, mean outgoing SW difference (Fu-Liou UKMO) is -5.9 W m⁻², and RMS difference is 17.4 W m⁻².
- In the longwave, mean OLR difference (Fu-Liou UKMO) is -5.0 W m⁻², and RMS difference is 6.5 W m⁻².
- Mean albedo diff: -0.0047

Newer Results: SE Pacific

- Observed cloud fraction: 0.578
- Simulated cloud fraction: 0.475
- Observed all-sky OLR: 272.4
- Simulated all-sky OLR: 270.4 (normalized: 275.5)
- Observed clear-sky OLR: 282.8
- Simulated clear-sky OLR: 283.6 (normalized: 289.5)
- Observed all-sky TOA albedo: 0.193
- Simulated all-sky TOA albedo: 0.184 (normalized: 0.189)
- Observed clear-sky TOA albedo: 0.093
- Simulated clear-sky TOA albedo: 0.073 (normalized: 0.074)

CERES FBCT Cloud Occurrence

CERES SW albedo by cloud type

CERES OLR by cloud type

Newer Results: EQ Pacific

- Observed cloud fraction: 0.798
- Simulated clear fraction: 0.397
- Observed OLR: 227.7
- Simulated OLR: 247.7 (normalized 260.2)
- Observed clear-sky OLR: 276.0
- Simulated clear-sky OLR: 280.6 (normalized 291.6)
- Observed TOA albedo: 0.220
- Simulated TOA albedo: 0.183 (normalized 0.186)
- Observed clear-sky TOA albedo: 0.099
- Simulated clear-sky TOA albedo: 0.079 (normalized 0.079)

Newer Results: EQ Pacific

- Gathered 1235 profiles (approx. one per day) with various cloud conditions over 5 S

 5 N, 160-170 E.
- In the shortwave, mean outgoing SW difference (Fu-Liou UKMO) is -3.4 W m⁻², and RMS difference is 19.6 W m⁻².
- In the longwave, mean OLR difference (Fu-Liou UKMO) is -12.0 W m⁻², and RMS difference is 14.6 W m⁻².
- Mean albedo diff: -0.0029

CERES FBCT Cloud Occurrence

CERES SW albedo by cloud type

CERES OLR by cloud type

Newer Results: SGP

- Gathered 1606 profiles (approx. one per day) with various cloud conditions over 30-40 N, 90-100 W.
- In the shortwave, mean outgoing SW difference (Fu-Liou – UKMO) is 2.6 W m⁻², and RMS difference is 12.4 W m⁻².
- In the longwave, mean OLR difference (Fu-Liou UKMO) is -3.5 W m⁻², and RMS difference is 6.6 W m⁻².
- Mean albedo diff: 0.0037

Newer Results: SGP

- Observed cloud fraction: 0.539
- Simulated cloud fraction: 0.518
- Observed all-sky OLR: 231.1
- Simulated all-sky OLR: 236.7 (normalized: 240.3)
- Observed clear-sky OLR: 259.3
- Simulated clear-sky OLR: 270.6 (normalized: 272.3)
- Observed all-sky TOA albedo: 0.367
- Simulated all-sky TOA albedo: 0.333 (normalized: 0.330)
- Observed clear-sky TOA albedo: 0.204
- Simulated clear-sky TOA albedo: 0.164 (normalized: 0.159)

CERES FBCT Cloud Occurrence

CERES SW albedo by cloud type

CERES OLR by cloud type

